Quadratic and Linear Functions

- 1. Convert each of the following into the form $y = a(x h)^2 + k$ a) $y = 3x^2 + 2x + 1$ b) $v = -2x^2 + 2x - 1$
- 2. For each of the given questions determine the indicated information:

a)	$y = -3(x+2)^2 + 1$	b) $y = 4(x - 3)^2 - 2$
1.	direction of opening	 1. Direction of opening
2.	shape	 2. Shape
3.	max/min point	 3. max/min point
4.	max/min value	 4. Max/min value
5.	axis of symmetry	 5. Axis of symmetry
6.	coordinates of vertex	 6. Coordinates of vertex
7.	y-intercept	 7. y-intercept
8.	domain of function	 8. Domain of function
9.	range of function	 9. Range of function
10	. Table of Values	10. Table of Values
х		x
У		У

У

3. Using the appropriate formula determine the equation of the axis of symmetry, the min/max value and the coordinated of the vertex of the equation $y = 2x^2 - 6x - 5$

4. Determine the required info: a) slope and y-intercept of the equation: b) slope, midpoint, distance of the 5x - 8y = -12line joining the points (-5, -9) and (-3, 11)

- 5. Determine the equation of the line given: (NO FRACTIONAL COEFFICIENTS)
 - a) m = 2/3 and b = -6
- b) m = -4 and contains the point (-2, -4)
- c) passes through the points (2, 7) and (-4, -3)
- d) passes through the point (1,3) and is parallel to a line with equation 5x - 3y = 4
- e) of the perpendicular bisector of the line segment joining the points (6, 2) and (10, -4)